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Spontaneoussymmetry breaking
and principal fibre bundles
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Abstract. Under the unique physical existanceassumptionfor an interacting
vacuum,a globalgeometricalconstruction is given for the Higgs mechanismin the
caseof spontaneoussymmetrybreakingin a generalcompactsymmetrygroup. The
massmatrixfor theresultingmassivegaugebosonsin exhibited.

INTRODUCTION

Since about twenty years. classical gauge theoriesare well describedthrough

differential geometry: a gauge field is generallyrepresentedby a connection on

a principal fibre bundle P for which the structuregroupis the symmetry group

of the theory.

The formation of massivegaugebosonsin the caseof spontaneoussymmetry

breaking is widely discussedin recent literature ([2], [4]. [6]. [7], [121) and

explained by the <<Higgs mechanism>s:massive gauge vector bosons would he

createdby the vanishing, from the physical spectrum,of some(massless)<<gauge

hosonseand of masslessscalarfields (the Goldstonebosons).-l his picture.unfor-

tunately, breaksthegeometricalnatureof the theory.sinceit canonly be realized

by using particular cross-sectionsof the principal bundle P (unitary gauges).

In the present paper we discuss geometrical consequencesof spontaneous

symmetry breaking: to the physical assumption of the existence of vacuum

(interactingfield of minimal energy) is canonically associateda reductionof the
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principal bundleP. The pull-back on this subbundleof agaugefield on P induces

a tensorial 1 -form which is interpretedas a system of neutral massivevector

particles.
The resultsare statedin the most generalframe, in which thesymmetrygroup

is a compactLie groupwhich can be associatedto any non gravitationalinterac-

tion and where the potential for scalarfields is only assumedto havedegenerate

minimum. We give a simple and general form to the massmatrix for theniassive

gaugebosonscoming from the spontaneoussymmetrybreaking.
We remark that the scalarfields potential is usedonly to select a non trivial

orbit of the groupof symmetries(hiddenor not).

For previous geometric approachesof spontaneoussymmetry breaking one

casesee [10], [5]. The construction developedin [5] is closeto ourshut made
undermuchstrongerassumptionson the symmetry groupG and the little group

H. These assumptionsdon’t seem to he satisfied in some physical situations,

especiallyin grand-unificationtheory.

§ 1. SETTINGS

Let’s assumeto be given:

(a) a compact. connectedLie group G associatedto an interaction called a

G-jnteraction(we do not considerthegravitationalinteraction).

A positive definite Ad-invariant scalar product ( ) is chosen,once for all,

on the Lie algebra~ of G. If G is semi-simple,onetakesusually theoppositeof

theKilling form.
(b) a unitary representationp of G in a hermitian (or euchdean)space

(E. (‘ - )) of dimension n and such that G leaves invariant no non-vanishing

vectorof E.
(c) a flat space-time F~supposedto be an open subsetof the Minkowski

space1R4 with natural coordinates(Xa)n = 0. ~in which componentsof the flat

lorentzianmetric are:

(1) t~nI

3 2~b~°—b~

(d) a lagrangiandensity ~ : E x L(IR
4, E) —* IR for n-tuplesof scalarfields.

written:

(2) .2~(v,w) = fl~(wIw~)— V(v)

a
where w = w — and where V : E —i’ JR is a potential function assumedto

be G invariant. G is called usually the internal symmetrygroupfor the lagrangian

density Sf’~.
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The physical assumptionof the existenceof free fields ~ : —* E of minimal

energyis equivalentto the statementthat thepotential Vhasanabsoluteminimum
which we shall assumeto be zero.

(e) a principal fibre bundleP-~~with structuregroup G and basemanifold
V4.

P is called the spaceof phasefactors [14]. An equivariantmap t~i :P-+E (i.e.

t~D(pg)= p(g~)t,1i(p)) representsa n-tuple of scalar fields with G-interaction.

An alternativeway for description of such fields is to considerthem as cross-

-sectionsof the associatedvectorbundleP x E -+ J’~([8], [141).
A G-interaction is definedby a connectionform w on P which is called the

gaugefield or Yang-Mills field.

The lagrangiandensity for thepair (tli, w) is written:

(3) £f
2(k~)=~

0(~1i,D~i)+ ~

where:
— forpEP

(4) D~i(p)=a~I(p)o(aIr(p)IH)~l

is the covariant derivative of i,1i with respect to the connectionw (H~is the

horizontal spaceof w at thepoint p),

— theYang-Mills lagrangiandensity:

(5) ~YM~

is expressedby the meansof gaugefield strengths[14] which are deducedfrom

thecurvatureform ~ of theconnectionw by:

a a
(6) F=~—,—a~ ax~

where — is thehorizontal lift (for w) of thevectorfield —

axa axu
Let us notice that the function which is a priori defined on P is,

accordingto G-invarianceproperties.afunction on thespace-timel’~.

§2. GEOMETRIC CONSEQUENCES OF SPONTANEOUS SYMMETRY
BREAKING

The invarianceof the potential V implies that the set V 1(0) of pointsof E
where V is minimal is a union of orbitsof G.
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From now weassumethat V 1(0) is a singleorbit of G.

The spontaneoussymmetry breaking appearswhen k = dim (V1(O)) ~ 1.

For all the following, a vacuum state v
0E V’(O) is chosen. Symmetries

spontaneouslybrokenaretransformationsg E G suchthat

p(g)v0* v0.

The little group ofsymmetriesH (definedup to a conjugationin G) is the isotro-

py subgroupof in G.
The main assumption(physically reasonable)on which is basedthe following

constructionis:
Main assumption- There exists an interacting scalar field t,1i~: P-+ E which

takesits valuesin V 1(0) (interactingvacuum).

The next proposition shows that this assumptionhas interestinggeometric

consequences.[81.

PROPOSITION1. The set = I,Li~
1(v

0)CF is a principal subbundleof P with
structuregroup the trlittle group~H.

Proof Let us denote by p’ : ~ -+ L(E) the representationof the Lie algebra

fq derivedfrom therepresentationp of G.
Let ~ be a tangentvector to V 1(0) at v0. Then thereexists~ ~ suchthat

=

Since is an equivariantmap,oneseesthat for anyp E

~ (PexP(_t~)!to).

Hence, ,,1i~: P-÷V’(O) is a submersionat any point of and R0 is a closed
submanifoldofFsuchthat:

dimI~=dimP—k.

On theotherhandonecaneasilyverify that

(i) VxEJ~:R~fl7r
1(x)�~,

(ii) Vp EP~, VgE G, pgEF
0 iff gEH.

Let us notice that if w is the extension to P of a I -form of connectionon

onehave:

D’-~’ = 0.
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For an interaction defined by such a connectionw the energyof the scalar

field ~1i~is zero.
Let .)( be the orthogonal complementof )~°in ~ with respect to the Ad-

-invariant euclidean product ( ‘ ‘ ). .)( is invariant by the adjoint representa-

tion of H in ~ andwe denoteby p the inducedrepresentationof H in .)(.
Let us give a connection form w on P defining a G-interaction.Then its

pull-back i~w by the canonical imbedding i =P0C~.Pnaturally splits into:

(7)

where w0 is ,)~°-valued and -y is it-valued. One caneasily prove the following

proposition:

PROPOSITION2. is a connection 1 -form on and ‘y is a tensorial 1 -form

([9], [8]) oftypep.

The next proposition will be used in proposition 4 in view of further interpre-

tation of the lagrangiandensity 2(~W).

PROPOSITION3. Let p E1-~YE T(~)V~=IR~.If YE T~Pis the horizontal lift

of Yfor wand }~ET~P0isthehorizontal lift of Yfor w~then:

d
(8) Y= + — p exp (— t y(p)(}~)I~= 0’

Proof We set:

~,c=~—pexp(t~)I~0IEE3r~C~P

If

d
X= —pexp(t~)l ~,

dt

belongsto 7I~fl i(1,. we have:

0 = a~(pxx)= ~0(p exp (t~))I~~=—p’(~)v0.

Hence:

~E~°fl ,K={0} and X=0.
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Sincedim = k wededucethat:

(9) TP=T1~n~,

Hence:

d

(10) Y=X+ —pexp(t~)I~0XET,,i~, ~E)(.

Putting (10) in:

w(p)(Y) = 0

a ir(p)(Y) = Y

oneobtainseasily:

(11) —

PROPOSITION4. Let p C and X, YE ~ V~.
Then:

(12) DW i/i0(p)(Y) = p’(-y(p)(}~))u0,

(13) ~Mp)(X, fl=&~0(p)(X0, +D~”0(p)(~0,Y0)+[y(p)X0.-y(p)Y0]

Where:

(a) &‘~ (resp. &L~)is the curvature2-formof w (resp. w0);
(b) X and Y(resp. X~and Y0) are the horizontal lifts at p ofX and Yfor w

(resp.for w0);

(c) The tensorial 2-form D”~0~yis the covariant differential of y with respect
to the connectionw0.

Proof

(i) By definitionandusingproposition3 we have

D~0(p)(fl= a~0(p)(fl=a~0(p)(_pexp (- ty~)(~))I~0=

d

= — p(exp (t7(p)( Y0~)v&It = ~ ‘eY(p)( Y0))v0.

(ii) Since ~Z= dw + [w, w] and X and Y are w-horizontal vectors,we have

from proposition3:
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~(p)(X, Y) = dw(p)(X, 1’) = dw(p)(X0, 1~)+

+ dw(P)(~~— p exp (— ty~)(~)~ +

+dw~)(_ pexp(—t )(~&)I~-~~

But and Y~are tangentto I~, sothe first term is equalto:

i*dw(p)(X0, }~)= dw0(X0, Y0) + dy(p)(~0,Y0) =

= ~Z0(p)(X0,}~)+ D”0y(p)(X0, ~).

SinceXis w-horizontal,the secondterm writes:

— PexP(_t)(}~))It0)

and is equalto 0 because~2is a tensorial form. In the sameway, thethird term

writes:

p exp (—ty(p)(~) ~ w(p)(Y~] =

= [y(p)(X0), i*w(p)(Yri)] = [y(p)~, (y(p)(}’~)].

§4. MASSIVE GAUGE BOSONS

The lagrangiandensity ~f’~ ~ describingthe interactingenergy minimizing

field andgaugefield w is:

(14) ~i~,w) ~(Dw tIi0ID~’ iJi0)+ ~

where~‘YM(w) is givenby (5).
From proposition4, onegets,for p E I~:

(15) D0(p)=p’(~y~(p))v0,

(16) F~(p)= F~(p)+ D’~’0y~(p)+ [‘y~(p),-y~3(p)]

where:

a
a ‘ax 0
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a
F~=~20(p)— . —

a axn 0 3x~

Dw0~(p)=D~0~)((_) (i)).
axa 0 axd ~

Putting(15) and (16) in formula (14) we seethat the lagrangiandensity ~

canbe expressedas follow

~ ~)(X) = — — ~aA~S (DW0~0(p)D~°y~5(p))+

(17) + ~ad(~’((~))~1 p’(’y~(p))v0)+ ~~YM(wo) +

+ termsof degree3 and4 in (w0. y).

wherep is any pointof .1~overx E J~.

The first term of (17) shows that the tensorial form y representsa k-tuple

of neutral vector boson fields interacting with the gaugefield defined by the
connectionw0([lI, [111,[151).

The secondterm of (1 7) can be interpreted,as usually done in field theory

as a mass term for thesevectorbosons. In order to have a betterunderstanding

of this quadraticexpressionlet us consideran orthonormalbasis (ei,.... ek) in

Xand put:

-y = y~e~.

Then, the massterm takesthe form:

(18) —

where

(19) N~1= 2Re~p’(e1)v0Ip’(e1)v0).

The real symmetricmatrix N = (N~)1 ~ k is positive. Indeed,for (x
1

x”) E one has:

N
11 x~x~= 2 (p’(x’e1)v01 p’(x’ e1)v0)E lR~

If N7. x’x
1 = 0. then:

p’(x’ e~)v
0= 0 so that x’e1 C ~ fl ~( = {0} and x 1 = = . . . = = 0.

The real symmetricpositivematrix M =V~is the massmatrix for themassive

neutralvectorbosonsrepresentedby ‘y.
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Let us concludeby few endingremarks:

1. Spontaneoussymmetry breaking and the existenceof an interacting ma-

terial field potential-minimizing implies that the Yang-Mills field defining the

interactionis partly madeof massiveneutral vector bosons. Thelatterarecalled

massivegauge bosonsand their massesdependonly on the representationp of

the internal symmetry group (see (19)). Moreover, the preceedingstudy shows

that there is no needfor introducingthe so called Goldstonebosonsin order to

generatemassivegaugehosons.
2. The developmentsof § 2 showthat thereis a significantgeometricdifferen-

ce betweenthe massivegaugebosonsand the <<remainingmasslessgaugevector

bosons>>consideredby physicists.In our terminology the first onesarerepresen-

tedby the tensorial1-form -y while thesecondonesarededucedfrom theconnec-

tion form w
0 and, by the way, should not, from a geometricpoint of view, be

consideredasvector particles.Thegeometricdifferenceis apparentlyindependant

of thephysicaldifferenceconcerningthemass.

3. It is possible to substitute to the Minkowski space-timean arbitrarily

given space-time.
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