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Abstract. Under the unique physical existance assumption for an interacting
vacuum, a global geometrical construction is given for the Higgs mechanism in the
case of spontaneous symmetry breaking in a general compact symmetry group. The
mass matrix for the resulting massive gauge bosons in exhibited.

INTRODUCTION

Since about twenty years. classical gauge theories are well described through
differential geometry: a gauge field is generally represented by a connection on
a principal fibre bundle P for which the structure group is the symmetry group
of the theory.

The formation of massive gauge bosons in the case of spontaneous symmetry
breaking is widely discussed in recent literature ([2]. [4]. [6]. [7]. [12]) and
explained by the «Higgs mechanism»: massive gauge vector bosons would be
created by the vanishing. from the physical spectrum, of some (massless) «gauge
bosons» and of massless scalar fields (the Goldstone bosons). This picture. unfor-
tunately, breaks the geometrical nature of the theory. since it can only be realized
by using particular cross-sections of the principal bundle P (unitary gauges).

In the present paper we discuss geometrical consequences of spontaneous
symmetry breaking: to the physical assumption of the existence of vacuum
(interacting field of minimal energy) is canonically associated a reduction of the

Key-Words: spontaneous symmetry breaking, gauge fields, gauge bosons, Yang-Mills fields,
connections.
1980 Mathematics Subjet Classification: 53 B 50, 53 C 05.



222 Y. KERBRAT, H. KERBRAT-LUNC

principal bundle P. The pull-back on this subbundle of a gauge field on £ induces
a tensorial 1-form which is interpreted as a system of neutral massive vector
particles.

The results are stated in the most general frame, in which the symmetry group
is a compact Lie group which can be associated to any non gravitational interac-
tion and where the potential for scalar fields is only assumed to have degenerate
minimum. We give a simple and general form to the mass matrix for the massive
gauge bosons coming from the spontaneous symmetry breaking.

We remark that the scalar fields potential is used only to select a non trivial
orbit of the group of symmetries (hidden or not).

For previous geometric approaches of spontaneous symmetry breaking one
case see [10], [5]. The construction developed in [5} is close to ours but made
under much stronger assumptions on the symmetry group G and the little group
H. These assumptions don’t seem to be satisfied in some physical situations,
especially in grand-unification theory.

§1. SETTINGS

Let’s assume to be given:

(a) a compact, connected Lie group G associated to an interaction called a
G-interaction (we do not consider the gravitational interaction).

A positive definite Ad-invariant scalar product ( [ - ) is chosen. once for all.
on the Lie algebra ¢ of G. If G is semi-simple. one takes usually the opposite of
the Killing form.

(b) a unitary representation p of G in a hermitian (or euclidean) space
(E.(-]-)) of dimension n and such that G leaves invariant no non-vanishing
vector of E.

(c) a flat space-time V4 supposed to be an open subset of the Minkowski
space IR* with natural coordinates (x"‘)a:[)_w3 in which components of the flat
lorentzian metric are:

(N Mg = 280870 — 8,

(d) a lagrangian density _?0 :E x L(R* E) > IR for n-tuples of scalar fields.
written:

(2) Ly, w) = 0w | w) — V(v)
)
where w_=w ( and where V :E — IR is a potential function assumed to
“ ox®

be G invariant. G is called usually the internal symmetry group for the lagrangian
density £,
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The physical assumption of the existence of free fields ¢ : ¥, > £ of minimal
energy is equivalent to the statement that the potential V has an absolute minimum
which we shall assume to be zero.

(e) a principal fibre bundle P 5> V, with structure group G and base manifold
V,

P is called the space of phase factors [14]. An equivariant map ¢ : P> E (i.e.
Vvipg) = p(g ') Y(p)) represents a n-tuple of scalar fields with G-interaction.
An alternative way for description of such fields is to consider them as cross-
-sections of the associated vector bundle P X E-> V, ([8], [14)]).

A G-interaction is defined by a connection form w on P which is called the
gauge field or Yang-Mills field.

The lagrangian density for the pair (, w) is written:

(3) "f('l/,w): go(\P,Dw l1/)+ yYM(w)
where:

— forpeP
(4 Dy (p)=0y(p)o(d7(p) IHp)‘l

is the covariant derivative of ¢ with respect to the connection w (Hp is the
horizontal space of w at the point p),
— the Yang-Mills lagrangian density:

1
(5) ’?YM(w):* _4—7]&71735(}2‘{3'5;5)

is expressed by the means of gauge field strengths [14] which are deduced from
the curvature form §2 of the connection w by:

o
6) F =Q , —
b ax®  9x*f

0 0
where —a — is the horizontal lift (for w) of the vector field —-—a -~ .
X x

Let us notice that the function .i”(w ) which is a priori defined on P is,
according to G-invariance properties, a function on the space-time V.

§2. GEOMETRIC CONSEQUENCES OF SPONTANEOUS SYMMETRY
BREAKING

The invariance of the potential V implies that the set ¥~ 1(0) of points of £
where V' is minimal is a union of orbits of G.
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From now we assume that V~1(0) is a single orbit of G.

The spontaneous symmetry breaking appears when & = dim (V~1(0))>1.

For all the following, a vacuum state v,€ V71(0) is chosen. Symmetries
spontaneously broken are transformations g € G such that

p(gIvy# v,

The little group of symmetries H (defined up to a conjugation in G) is the isotro-
py subgroup of v, inG.

The main assumption (physically reasonable) on which is based the following
construction is:

Main assumption - There exists an interacting scalar field % : P> FE which
takes its values in ¥~ }(0) (interacting vacuum).

The next proposition shows that this assumption has interesting geometric
consequences. [8].

PROPOSITION 1. The set By= Y;'(v) C P is a principal subbundle of P with

structure group the «little group» H.

Proof. Let us denote by p': @~ L(E) the representation of the Lie algebra
@ derived from the representation p of G.
Let ¢ be a tangent vector to V'~ 1(0) at Vg Then there exists £ € @ such that

§=p"(8)y,
Since Y, is an equivariant map, one sees that forany p € £y
d
£ =T bo|— (Pexp (=D, o |
Hence, \00 : P> V-1(0) is a submersion at any point of 1:) and 1:) is a closed
submanifold of P such that:
dim £ = dim P — k.
On the other hand one can easily verify that
@) Ver‘t:IBﬂw‘l(x);L-q),
(ii) VpeI:), vegeQgG, pge% iff g€ H. ]

Let us notice that if «w is the extension to P of a 1-form of connection on

PO, one have:

Dy, =0.
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For an interaction defined by such a connection w the energy of the scalar
field \1/0 is zero.

Let X" be the orthogonal complement of J in ¢ with respect to the Ad-
-invariant euclidean product (-|-). X is invariant by the adjoint representa-
tion of H in ¢ and we denote by u the induced representation of Hin % .

Let us give a connection form w on P defining a G-interaction. Then its
pull-back i*w by the canonical imbedding i = £, C__, P naturally splits into:

7) i*w= Wyt
where w is J -valued and v is ¢ -valued. One can easily prove the following

proposition:

PROPOSITION 2. w,,
([91, [8]) of type u.

is a connection 1-form on K and v is a tensorial 1-form

The next proposition will be used in proposition 4 in view of further interpre-
tation of the lagrangian density % oo
PROPOSITION3. Let pe Ry YET, , V,= R If Ye TP is the horizontal lift
of Y for w and —}706 T;JIBis the horizontal lift of Y for w,, then:

(8) Y=Y+ —(%peXp(—tv(p)(YO)l,:O-
Proof. We set:
d
X, = Ef—pexp(tE)L:O‘EEf CTP
If
d

X = PR exp(tE)|,_ 4
belongs to 7,/ N Jifp. we have:
d
0=3yy(pIX) = = Yo exp (tE))|, -, = — o' (v,

Hence:

te N A ={0}and X =0.
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Since dim Ji”p = k we deduce that:

©) TP=TRe X,
Hence:
_ d
(10) Y=X+ d—tpexp(t2)|t=0,X€7;]1?), tex .

Putting (10) in:

w@ENY)=0
dn(p)Y)=Y
one obtains easily:
-
(n _
£=—v(@)XY). -
PROPOSITION 4. Let p C If)and X Ye T"(p) V4.
Then:
(12) D« yo(p)(Y) = o' (v (DX T)v,.
(13) QEXX, ¥) = (0N X, Y) + D7 v(p)(Xy, Y + [v(p) X v(p) )
Where:

(a) QL (resp. SZO) is the curvature 2-form of w (resp. wo);

(b) X and Y (resp. )70 and 70) are the horizontal lifts at p of X and Y for w
(resp. for wo);

(c) The tensorial 2-form Dw"y is the covariant differential of v with respect

to the connection Wy

Proof.
(i) By definition and using proposition 3 we have
_ d _
D=y, (pX(Y) = 0y, (pX( Y)=20y,(p) d—t pexp (—ty(P)XY )|, _, =

d _ -
= p(exp (tY(PN YY)y |, _ o= P (YD) YD)V,

(ii) Since = dw + [w, w] and X and Y are w-horizontal vectors, we have
from proposition 3:
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QPIX, Y) =dw @)X, ¥) = dwp)X, ¥) +

- d =
+ dw(p)(X, m pexp (—ty(pXYY) |, _ 0) +

d _ _
+ dw(p)(:; pexp (—ty@PHXD) |, = o YO).

But /70 and )_’0 are tangent to B, so the first term is equal to:
i*dw(P)Xy, ¥ = dwy (X, T) + dy(p)(Xy, ¥) =
= QXX T) + DOy (p) X, T

Since X is w-horizontal, the second term writes:

— d s
Q(p)(x, T Pew (—tv(pXYo))I,:o)

and is equal to O because §2 is a tensorial form. In the same way, the third term

writes:
d E7d —
_[w(&'pe"p ("7@)(Xo>)l,=o),w(p)(Yo> _

= [Y (@)X X,). i*0 (XTI = [v(p) Xy, (y(pX( T 1. .

§4. MASSIVE GAUGE BOSONS
The lagrangian density & o) describing the interacting energy minimizing
field ‘1’0 and gauge field w is:

(14) Lo oy =15DE Y| Dy v + &L ()

where £, (w) is given by (5).
From proposition 4, one gets, for p € F;:

(15) D Yo (p) = p'(v,(P))vy,
(16) F4(p) = F5(P) + D™ ,(p) + [1,(P), %, )]
where:

0
7, (P) =7(p)((——) )
ax%

0
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Putting (15) and (16) in formula (14) we see that the lagrangian density ¥
can be expressed as follow

(gr )

1 \
Ly X)=— " 1 n? (D70, (p)| D0, ,(p)) +

(17) + 0%’ (7, (PN | o (1, (PN + Ly () +
+ terms of degree 3 and 4 in (w,. 7).

where p is any point of £ over x € V.

The first term of (17) shows that the tensorial form vy represents a k-tuple
of neutral vector boson fields interacting with the gauge field defined by the
connection w, ([11, [111, [15D).

The second term of (17) can be interpreted, as usually done in field theory
as a mass term for these vector bosons. In order to have a better understanding
of this quadratic expression let us consider an orthonormal basis (e .- e,) in
A and put:

Yo =™ 7(2181"

Then, the mass term takes the form:

1 . .
(18) = 1%y, (P) Y, (D))
2
where
(19) N;; = 2Re (p'(e;)v,| p'(€;)v).

The real symmetric matrix N = (N;)), ;. is positive. Indeed. for o
x*y € IR¥ one has:

Ni]' xi xf =2 <p’(xiei)l)0[ p’(xje]_)uo>€ IR*_ .

lfNi]. x! x/ = 0, then:
p'(x'e)vy;=0 so that x'e, C AN A ={0} and xl=x?= . =xk=0
The real symmetric positive matrix M =V/N is the mass matrix for the massive
neutral vector bosons represented by 7.
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Let us conclude by few ending remarks:

1. Spontaneous symmetry breaking and the existence of an interacting ma-
terial field potential-minimizing implies that the Yang-Mills field defining the
interaction is partly made of massive neutral vector bosons. The latter are called
massive gauge bosons and their masses depend only on the representation p of
the internal symmetry group (see (19)). Moreover, the preceeding study shows
that there is no need for introducing the so called Goldstone bosons in order to
generate massive gauge bosons.

2. The developments of §2 show that there is a significant geometric differen-
ce between the massive gauge bosons and the «remaining massless gauge vector
bosons» considered by physicists. In our terminology the first ones are represen-
ted by the tensorial 1-form vy while the second ones are deduced from the connec-
tion form w, and, by the way, should not, from a geometric point of view, be
considered as vector particles. The geometric difference ts apparently independant
of the physical difference concerning the mass.

3. It is possible to substitute to the Minkowski space-time an arbitrarily
given space-time.
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